
E L S E V I E R

Available online at www.sciencedirect.com M A T H E M A T I C A L
AND

:C,ENCE ~D,. tCV" COMPUTER
MODELLING

Mathematical and Computer Modelling 40 (2004) 1453-1464
www.elsevier.com/locate/mcm

The First K Shortes t
U n i q u e - A r c Walks in

a Traffic-Light N e t w o r k

H s u - H A o Y A N G *
Inst i tute of Production System Engineering and Management

National Chinyi Inst i tute of Technology
Taiping, 411, Taiwan, Republic of China

yanghh©chinyi, ncit. edu. tw

Y E N - L I A N G C H E N
Department of Information Management

National Central University
Chung-Li, Taiwan 320, Republic of China

ylchen©mgt, ncu. edu. tw

(Received May 2003; revised and accepted July 2003)

A b s t r a c t - - I n this article, we present an algorithm to find the first K shortest unique-arc walks
in a traffic-light network. Each node of the present network is associated with a repeated sequence of
different windows to model operations of traffic signals and intersection movements. Unlike conven-
tional simple or looping paths, we refer to the paths in this paper as unique-arc walks because they
may include repeated nodes but will exclude repeated arcs. Using the heap structure, we develop an
algorithm to find the first K shortest unique-arc walks in time O(Kr[V[3[A[), where IV[is the number
of nodes, [A] is the number of arcs, and r represents the number of different windows associated with
a node. © 2005 Elsevier Ltd. All rights reserved.

K e y w o r d s - - S h o r t e s t path, Traffic-light, Walk.

1 . I N T R O D U C T I O N

A classical shor te s t p a t h p rob lem is concerned wi th f inding the p a t h wi th the m i n i m u m t ime,

d is tance , or cost from a source node to a des t i na t ion t h r o u g h a connec ted network. I t is an

i m p o r t a n t p rob l em because of i ts numerous app l i ca t ions and genera l i za t ions in t r a n s p o r t a t i o n [1],

communica t i ons [2], and m a n y o the r areas. Reade r s are referred to severa l reviews on the shor tes t

p a t h p rob l em [3-5]. To mee t p rac t i ca l needs, a t ime-cons t r a ined shor te s t p a t h p r o b l e m general izes

the shor te s t p a t h p r o b l e m by inco rpo ra t ing t e m p o r a l factors . T h e t ime window has been a

c o m m o n form of t ime cons t r a in t t h a t assumes t h a t a node can be v i s i t ed on ly in a specified t ime

*This author was supported in part by National Science Foundation Grant No. 90-2416-H-167-003. Author to
whom all correspondence should be addressed.
The authors are grateful to the anonymous referees for their helpful comments.

0895-7177/05/$ - see front matter (~) 2005 Elsevier Ltd. All rights reserved. Typeset by .AA4S-TEX
doi:10.1016/j.mcm. 2005.01.004

1454 H.-H. WANG AND Y.-L. CHEN

interval [6-9]. In other words, a time window defines the earliest t ime and the latest time during
which the node is available.

Most shortest path algorithms calculate optimal paths, but do not explicitly consider intersec-
tion movements that can be significant in congested street networks [10]. To reflect intersection
movements in practice and model operations of traffic signals, Chen and Yang [11] introduced a
new kind of time constraint (traffic-light constraint) by associating each node with a repeated se-
quence of different windows. The result of this formulation is that the problem of passing through

a number of traffic signals as quickly as possible reduces to a shortest path problem. Since Chen
and Yang [11] have developed a polynomial-time algorithm for finding the shortest path in the

previous paper, this paper extends their study to find the first K shortest paths in the present

network. The motivation of this extension arises from its practical applications. As pointed out
by Eppstein [12], one of the reasons to find R" shortest paths is that certain constraints may be

difficult to define or hard to optimize; a common strategy is to compute several paths and then
choose among them by considering the other criteria. Since traffic-light constraints model traffic
signals that contain cyclic periods of stop (red periods), we could consider other criteria as well

as travel time to choose the optimal path. For example, suppose the stop times of two paths
are different but the arrival times are the same, which means two paths spend different actual
travel times. In this case, we can find paths in ascending order of arrival t ime first, and then
choose a path by taking the length of stop time into account. Another likely criterion is fewer

numbers of stops that could alleviate the degree of traveling discomfort and be in the interest of
vehicles. The last example arises from the fact tha t we could spend several time-windows at the

same traffic signal waiting for the queue to clear. This may not be common for some regions;
however, it is a real-life application in major cities such as Taipei City in Taiwan. For example,

the 2001 Highway Capacity Manual in Taiwan [13] indicates that under a normal situation, the

approximate discharging rate of a passenger car unit (PCU) per hour is 1950 vehicles. The situa-
tion designates seven conditions, one of which is tha t the intersection is located in a metropoli tan
area (for example, Taipei City). To know how the discharging rate affects the length of a queue,

consider the 2003 Traffic Flow Data [14] tha t collected four time intervals in Taipei City: 7 A.M.
to 8 A.M., 8 A.M. to 9 A.M., 5 P.M. to 6 P.M., and 6 P.M. to 7 P.M. Take the intersection of
MinQuan East Road and RueiGuang Road for example. On the day that the data were col-

lected, the numbers of westbound (from MinQuan East Road) vehicles at the four time intervals
were: 2696, 2629, 2225, and 2632. These numbers, according to Dion et al. [15, p. 106], suggest
that a growing residual queue is to form because the number of vehicles reaching the intersection

exceeds the number of vehicles that can be served by the traffic signal.
The result of introducing the queue length as an explicit constraint would be hard to optimize

the network model and likely be computationally intractable. Instead, computing several paths
can help to choose the path where the queue length is t reated as a constraint tha t is ignored
in optimization. All this explains that it is logical to compute not only the optimal path but
also a set of alternative ones, upon which we can choose the one while considering other criteria.
Moreover, finding a set of paths allows us to perform sensitivity analysis of the optimal solution
for various problem parameters [12], such as the length of green or red period of the traffic signals.

To reduce the conflict between accuracy and tractability, in this paper, we assume that travel
times between successive time-windows are deterministic in the sense that they will not be af-
fected by traffic conditions. In general, deterministic travel times were extensively used in the

conventional shortest path problems and K shortest path problems. In particular, they were also
used to compute shortest path for street networks [10] and real road networks [16]. Moreover,
according to Fu and Rilett [17], who considered travel times as a stochastic process, the use of
shortest path algorithms in dynamic and stochastic traffic networks is incorrect. Nevertheless,
they suggested that from a practical perspective, the shortest path algorithms might be accept-
able if the change of travel times as a function of time in the network is moderate. (Stochastic
travel time is not our concern in this paper.)

First K Shortest Unique Arc 1455

In literature, the first K shortest paths found can be members of two major classes:

(1) simple paths (paths without repeated nodes and arcs), and
(2) looping paths (paths with repeated nodes and arcs).

Regardless of the network under consideration, the efforts required to find simple paths appear
to be harder than those to find looping paths. In the first class, Yen [18] proposed a very efficient
algorithm that finds the first K simple paths in a general network in O(KIVI 3) time, where IV[is
the number of nodes. Katoh et al. [19] improved the time bound to be O(K(IAI+IVI log V)) for an
undirected network, where IAI is the number of arcs. In the second class, Dreyfus [20] developed
an efficient Mgorithm that finds the K shortest paths from one node to each one of the other
nodes in the time of O(K]V I log IVI). Fox [21] gave an algorithm to run in O(IVI 2 +KIV] log]VI)
time. Recently, Eppstein [12] used an implicit representation of paths to significantly improve
the time bound to be O(IA I + IV] logV + KV).

In this paper, we will focus on finding efficient paths, where a path P is efficient if there does
not exist another path P~, such that pt is formed by adding some nodes or arcs to P, but with a
smaller total time than that of P. Note that the total time of a path in the traffic-light network
contains two parts:

(1) the travel time of the arcs, and
(2) the stop time of the nodes waiting for the right direction.

Therefore, two properties arise. First, a simple path may not necessarily be an efficient path,
which means that the total time of a path with repeated nodes may be smaller than that of
the path without repeated nodes. Let (x, u, y) denote a directional route that travels from node
x to node u and leaves for node y. Then, the total time of the path (A, B, C, D, E) will be
larger than that of the path (A, B, H, B, C, D, E) if the stop time of (A, B,C} is longer than
that of the sum of (A, B, H), (B, H, B}, and (H, B, C). That is, instead of leaving for node C
directly from Node B, we can save time by turning to the intermediate Node H. The example
suggests that the conventional first K simple paths may no longer be the first K efficient paths
because adding repeated nodes could save the travel time. Second, all of the arcs of an efficient
path in a traffic-light network must be unique, meaning that the total time of a path without
repeated arcs is at least as good as that of the path with repeated arcs. For example, the path
(s , . . . , A, B, C , . . . , A, B, D , . . . , d) passes through the arc (A, B) twice. Then, we can generate
the other path (s , . . . , A, B, D , . . . , d) with total time as good as the original one by stopping at
Node B and waiting for the first right window to leave for Node D. In this case, the first K paths
without repeated arcs are efficient because including repeated arcs will increase the travel time.
The two properties show that the paths enumerated in this paper are neither simple nor looping.
We will refer to this kind of path as unique-arc walk in the remainder of the paper to reflect that
arcs are unique but nodes can be repeated.

The rest of this paper is organized as follows. In Section 2, we introduce the traffic-light
network, develop the algorithm for finding the first K shortest unique-arc walks, and provide
the time complexity of the algorithm. Section 3 includes the conclusion and directions for future
research.

2. S O L U T I O N A L G O R I T H M

2.1. P rob l em Defini t ion

For convenience, we follow the notations used in Chen and Yang [11]. Let N = (VI U
V2, A, WL, t, s, d) denote a traffic-light network, where V1 is the node set without window con-
straints, V2 represents the node set with window constraints, A is the arc set without multiple
arcs and self-loops, t(u, v) is the travel time of arc (u, v) c A. For each node u E V2, it is asso-
ciated with a window-list WL(u) -- (ws~, w~,l, w~,2,..., w~,~), where ws~ is the starting time of
the first window and w~,i is the i TM time window of node u for i = 1 to r. Each window wu# is

1456 H.-H. YANG AND Y.-L. CHEN

associated with a duration d~,i and a set of node-triplets NT~,i, where a node-triplet (x, u, y)
is in NTu,i if visiting node y from node x is allowed in window wu,i. Using a repeated sequence
to represent windows and assuming wu,o = wu,r, Wu,(k×r)+i is equal to Wu,i for any nonnegative
integers k and i, where i < r. In this context, the sequence of the windows describes the whole
phasing of the traffic signals.

Since a Node u in V1 can be treated as a node in V2 by associating it with a window of infinite
duration and containing all possible node-triplets, we assume that all the nodes are in set V2 for
ease of presentation. Consider Figure 1, where the number beside each arc is the arc's travel
time. We also show each node's duration d~,i and node-triplets NT~,i wherever appropriate. For
example, the first window of Node C starts at time 3; the duration of window w6,1+2~ is two time
units and the duration of window wc,2+2i is four time units where i is a nonnegative integer.
The triplet (A, C, d) is the allowable route in the window wc,1+2~, while (B, C, d) and (D, C, d)
are allowable in the window wc,2+2~. Therefore, at Node C coming from Node A (or Nodes B,
D), we can visit Node d only in the window wc, l+2i (or wc,2+2i). By Chen and Yang [11], the
shortest unique-arc walk in Figure 1 is (s, A, D, d) with total time 8.

WS A=O

dA,l=5, <s ,AD>

dg 2=3,<s,A ~ >,<s,A ,C >

\ .a,,

wsc=3

dc,1=2, <A,C,d>

dc~=4,<B,C,d>,<D,Cd>

/
WSB=2

dB,l=2, <s,B ,C >,<s,B ~D >

dBZ--4,<A,B,C >,<A,B D >

WSD=2

dD~=2, <A,D ,C>,<A,D d >

do 2=2,<B,D ,C >,<B,D d>

Figure 1. The traffic-light network.

2.2. T h e F r a m e w o r k of t h e A l g o r i t h m

To find the first K shortest unique-arc walks, our algorithm works as follows. Let Pc be
the set of all the walks from s to d in N. Initially, we find the first shortest unique-arc walk
P1 = (s = v °, v l , . . . , v m = d). Then, Pc - {P1} is the set of walks containing all the walks in

Pc, but P1. Define P(~), i = 1, 2 , . . . , m, as the subset of the walks in Pc - {P1} that includes the
subwalk (v i, v~+l , . . . , v m = d) but excludes the arc, (v i-1, v~). In this context, we define that for

P,(~), (v ~, v ~+1 , . . . , v "~ = d) is the in-subwalk and (v ~-~, v ~) is an out-arc. It can be easily verified

that Pc - {P1} can be partitioned into m disjoint walk subsets 19(1) p(c2), . . . , p(m).

First K Shortest Unique Arc 1457

PI

P,

Figure 2. The procedure to compute the first K shortest unique-arc walks.

Let P2 denote the second shortest unique-arc walk and is in p(r) . Then, we parti t ion p (r) _ {P2}
into disjoint subsets at the same way we partition Pc - {P1}. The subsets obtained from the

partitioning of p (r) _ {P2}, together with p(1), p (2) , . . . , p (~ - l) , p (r + l) . . . , p (m) , constitute a

partit ion of Pc - {P1, P2 }. Following the same procedure, we can generate the walks successively
in nondecreasing order. The procedure is illustrated in Figure 2, where each node denotes a

subset and the label inside the node is the name of the subset. Furthermore, the arcs emanating

from a node denote a partit ion of this walk set into different subsets, and the walk name, say P4,

beside a node p(2) indicates that the walk P4 is found from the walk set p(2).

Recall that all of the walks in the walk set Pc (i), for 1 < i < m, contain an in-subwalk from

node v i to d and exclude an out-arc (v i-1, v~). Suppose P2 is in p(r) , and let P2 be denoted

by (s = u °, u 1, . . . , u r' -- v r, v r + l , . . . , v m = d). The walk set P (r) - { P 2 } can be further

parti t ioned into r ' disjoint subsets. We define p(~,i) as the subset of walks in pc(r) _ {P2} with
the in-subwalk (u i, u~+l , . . . , u r' = v r) and without the out-arc, (u ~-1, u~). By including the

original in-subwalk and excluding the out-arc of p(r) , pc(r,~) is the subset of walks with the in-
subwalk (u ~, u i + l , . . . , u r' = v r, v r + l , . . . , v m = d) and without the out-arcs (u i-1, u ~) and (v r - l ,

vr). Repeatedly applying the procedure leads to the following property.

PROPERTY 1. Let P be a walk subset in the parti t ion of Pc - {P1, P 2 , . . . , P z } . Then, all the
walks in P contain an in-subwalk from a node u* to d and exclude an out-arc set.

After the parti t ion of walk subset, we need to find the shortest unique-arc walk from s to d in

the walk subset that includes a given in-subwalk and excludes a given out-arc set. For ease of
presentation, let pin and A °ut denote the in-subwalk and out-arc set, and we refer to the walk
satisfying pin and A °ut as the constrained walk.

2.3. H o w to F i n d t h e S h o r t e s t C o n s t r a i n e d W a l k

Given N, our algorithm constructs a network N I = (V/, A', s ~, d') so that the shortest walk P*
from s' -- s to d ~ -- u* in N ~ followed by pin forms a shortest constrained walk from s to d in N.

1458 H.-H. YANG AND Y.-L. CHEN

X0

Y2

(
Y3

) y5
(a). A shortest constrained walk in N.

Yl) Y3 C

x,? x2

) Y'
(b). Transform N into Nq

Figure 3.

Yl

X7

©

N' is constructed as follows.

(1) Remove all of the arcs in pin from N because P* does not pass through these arcs.

(2) Remove all of the arcs in A °ut from N.

(3) Set s' -- s and d' = u*.

For example, Figure 3a shows a shortest constrained walk from x0 to xT, where xo = s / -- s,

x4 = d t, x7 = d, pin ____ (X4, X5 ' X6 ' X7) and A°Ut{(x3 , X4) }. By the transformation above, we can

construct the network N r similar to Figure 3b, where all arcs in pin and A °ut are removed and

we need to find the shortest unique-arc walk from x0 to x4.

At this point, we make the following observations.

(1) Since the constructed network N I is a traffic-light network, the shortest path algorithm

such as Dijkstra's algorithm [22] cannot be applied. Instead, the shortest unique-arc walk

algorithm of Chen and Yang [11] should be used to find the shortest walk from s t = s

t o d ~ -- u*.

(2) Note that the shortest walk P* from s ~ to d ~ in N ~ followed by pin may not necessarily

form the shortest constrained walk from s to d. Consider Figure 3 again. Suppose there is

one shortest walk P* = (x0 , . . . , y2, x4) with minimum arrival time 30 and the other walk
P& = (x0, • . . , y4, x4) with a larger arrivat time 33. Further, suppose that direction (Y2,

x4, xs) does not allow us to leave for node x5 from x4 until time 40, while direction (Y4,
x4, xs} does at time 35. As a result, the walk P& can leave for node x5 earlier than the

wMk P*, because the earliest time to leave for node x5 from node x4 through arc (Y2, x4)

is 40 while through arc (Y4, x4) is 35. The example indicates tha t what really matters
in a traffic-light network is the departure time, rather than the arrival time. Compared

First K Shortest Unique Arc 1459

(3)

(4)

to the conventional shortest path problem, where earlier arrival always leads to earlier

departure, we focus on finding a walk from s ~ to d p in N t so that we leave node d ~ the

earliest.
Let pred denote the second-to-the-last node in the walk P& from s / to d ~ and suc denote
the second node in the walk pin. Then, the earliest t ime to leave for node suc from Node d t

at t ime t coming from node pred can be denoted as earliest(pred, d ~, suc, t). To determine
this value, we need the following data: the time reaching Node d', the time window list
associated with Node d p, and the routing direction (pred, d ~, suc). Readers are referred
to [11, Section 2.1] for the computational procedure.
For all of the nodes pred preceding Node d t in N ~, we can compute the earliest time to
arrive at Node d' through arc (pred, d') by the algorithm of Chen and Yang [11]. Let this

value be denoted as arrived(pred, d~). Then, the time to leave for node suc from Node d ~
with the preceding node pred is determined as earliest(pred, d', suc, arrived(pred, d')).
Among all of the nodes preceding Node d t, we choose the node through which we can leave
Node d t as early as possible. Therefore, the walk P ~ from s t to d ~ in N t whose leaving

time for node suc, equal to the following value, is the subwalk that forms the shortest
constrained walk from s to d in N.

min earliest(pred, d', suc, arrived(pred, d')) (1)
for all pred

By the preceding observations, we derive the following conclusion.

THEOREM 1. The shortest walk from s to d in the walk subset with pin and A °ut is the combi-
nation of the shortest walk P& from s to d p in N ~ followed by pin from d ~ to d, where P& satisfies
relation (1) shown above.

To find the shortest walk from s to din N subject to pin and A °ut, we develop the following
algorithm.

THE S C W ALGORITHM.

1. Transform N into N t.

2. Find the values arrived(pred, d') for all of the nodespread preceding Node d t in N t.
3. Compute the value of earliest(pred, d t, suc, arrived(pred, d')) for all pred preceding d'.
4. Choose the walk pS~ from s to d t in N t satisfying the relation (1).

5. Obtain the shortest constrained walk in N subject to pin and A °ut by appending pin to
p&.

arrived (v,u): the earliest time to arrive at node u through arc (v,u)
pred." the predecessor leading to arrived (v,u)

Figure 4. The first shortest unique-arc walk in the network.

1460 H.-H. YANC AND Y.-L. CHEN

To illustrate the SCW algorithm, reconsider Figure 1. After applying the algorithm of Chen

and Yang [11], we obtain the network shown in Figure 4, where P1 = (s ,A ,D ,d) with total
time 8, and the number in the square bracket beside each arc is the earliest arrival t ime through
the arc. In addition, we use pred to specify the predecessor that leads to arrived(v, u) if more

than one node preceding Node v. Observe that arrived(C,d)(-- 14) verifies tha t even though

arrived(A, C)(= 10) arrives at Node C later than arrived(D, C)(=9) does, the direction (A, C, d)
allows us to leave for Node d earlier. The set of walks Pc - {P1} can be parti t ioned into three

disjoint walk subsets as follows.

p(1): The walks with pin ___ (A, D, d) and without A °at = (s, A).

p(2): The walks with pin : (D, d) and without A °ut = (A, D).

p(3): The walks without A °ut = (D, d).

To show how to find the shortest constrained walk in a given walk set, consider p(2). By remov-
ing the arcs in A °ut and pin, the resulting network is shown in Figure 5. Since the shortest walk

in Figure 5 is the walk (s, B, D) with arrived(B, D) = 15 and earliest(B, D, d, arrived(B, D)) =
earliest(B, D, d, 15) = 16, we obtain the shortest constrained walk (s, B, D, d) with total t ime 18.

3,[8] / 3, [19] k.~

5, a'~x ~ 2, [1o],y

Figure 5. Subset p(2) with A °ut = {(A,D)} and p,n = (D,d).

LEMMA 1. The time complexity of S C W algorithm is 0 (rIV[3), where IV[is the number of
nodes of the network and r is the number of different windows of a node.

PROOF. Since every arc and node will be examined and processed at most one time in trans-

forming the network from N into N' , the time for Step 1 is O([A] q-IV[). Steps 2 and 3 can
be done in t ime O(rtV[3) owing to Chen and Yang [11]; the t ime to perform Steps 4 and 5 is

negligible. Therefore, the total t ime complexity is O(r[V[3).

2.4. H o w to Find the First K Shortest Unique-Arc Walks

The procedure shown in Figure 2 may generate a substantial number of walks and their cor-

responding constraints after a number of iterations. To manage this problem, we use the heap
structure [23], where the times to find and remove the minimum element or to insert a new

element are all O(log n) for a heap with n elements. Let each element in the heap represent an
enumerated walk and each element is associated with its in-subwalk and out-arc set. We develop
the following algorithm to find the first K shortest unique-arc walks, where the set Q is stored

by a heap structure.

THE K S C W ALGORITHM.
Find P1, the first shortest unique-arc walk.
Let in-subwalk(P1) = ¢ and out-arc(P1) = ¢, where ¢ represents an empty walk or set.

First K Shortest Unique Arc 1461

Store the element of P1 into Q.

For w = 1 to K
Select the shortest unique-arc walk P from Q, output it as the w th shortest walk, and

remove P from Q.

Let P ' be the subwalk of P satisfying P = pt@ in-subwalk(P), where • is the operator to

connect two subwalks.
Let the number of arcs in P ' be m, and P'(i,j) denote the subwalk from the i th arc to the

jth arc of P ' .

Partition the walk set of P into m disjoint walk subsets. The in-subwalk and out-arc set of
the ith walk subset, where 1 < i < m, can be obtained by:
the out-arc set is {P'(i, i)}U out-arc(P),
the in-subwalk is P' (i + 1, m) @ in-subwalk(P).

Use SCW algorithm to find the shortest constrained unique-arc walk for each walk subset.
For each walk subset, if there exists a shortest constrained unique-arc walk, then store it

and its associated in-subwalk and out-arc set into Q.

LEMMA 2. The time complexity of the KSCW algorithm is O(KrIVI3IA]), where IA[is the
number of arcs of the network.

PROOF. The most time-consuming part of obtaining the next shortest unique-are walk is the
partition of the subset of walks containing the one that is most recently found into disjoint walk
subsets. By definition, there are at most [Alarcs in an unique-arc walk; hence, there are at
most [A[disjoint subsets in each partition. For each disjoint subset, we find the shortest unique-
arc walk by the SCW algorithm, which requires O(rlV[3). Hence, the total time to find the next
walk is O(r[V[3[AI). If K walks are enumerated, the time is O(Kr[V[3[A[).

EXAMPLE 2. Consider Figure 1 again. In Step 1, we find P1 = (s, A, D, d) as shown in Figure 4.
Walk P1 with in-subwalk(P1) = ¢ and out-arc(P1) = ¢ are stored into the heap.

In the first cycle of Step 2, where w = 1, the walk P removed from the heap Q is P1. Since
in-subwalk(P1) = ¢, P ' = (s, A, D, d); we partition the walk set of P into three walk subsets as
follows.

The first subset p(1) (Figure 6) has A °at = {(s, A)} and pin = (A, D, d).

The second subset p(2) (Figure 5) has A °ut = {(A, D)} and pin = (D, d).

The third subset Pc (3) (Figure 7) has A °ut -- {(D, d)} and pin __ ¢.

For each of these three subsets, we find their shortest constrained unique-arc walks as follows.
There is no such walk in p(1).

i
7,[15],s j"

%

~ [[1 3 , [19]] ' ~

,>
Figure 6. Subset p(1) with A °ut = {(s, A)} and pin = (A, D, d).

L462 H.-H. YANG AND Y.-L. CHEN

¢4

02

o

f-,

H II 7, ~II I, ~ 7,

5"5" ~-~ ~ ~ ~
<j <~5 ~ <~" 5"~" ~

"~ II 11 "~ II II II II

,5~ ,2~ ~ ~-

7,
Q-
cf

L) --~

<" 5"

II ~ il
H

<-

II II ~-,

First K Shortest Unique Arc 1463

[10]./ ~ 3, [9], A

Figure 7. Subset p(3) with A °ut ~- {(D, d)} and pin = 0.

The shortest constrained unique-arc walk in p(2) is (s, B, D, d) with time 18.

The shortest constrained unique-arc walk in p(3) is (s, A, C, d) with time 14.

Hence, walk subsets/)(2) and p(3) and their related information are stored into the heap Q;
the result of the execution of the algorithm is summarized in Table 1. To see how finding K
walks may help to choose a route when the other criteria are involved, consider the walks p3 =

(s, A, D, C, d) and P4 = (s, B, C, d). The travel time of each of these two walks is 15; the stop
time of P3 is 3, while the stop time of P4 is 4. As we described in Section 1, although two walks
reach the destination at the same time, choosing which one walk could depend on the length of
stop time.

3. C O N C L U S I O N S

This paper studies finding the first K shortest unique-arc walks in a traffic-light network
that models operations of traffic signals and intersection movements. The name unique-arc walk
derives from the fact that the walk found in this paper may include repeated nodes but will exclude
repeated arcs. The major contribution of the paper is that we have developed an algorithm of
polynomial time to find the first K shortest unique-arc walks in the present network. This paper
has several possible extensions. First, we can consider the situation where we choose to stop for
some time and leave later. Note that the length of stop time can vary widely depending on the
decision scenario. Dealing with this issue not only complicates the enumeration of all possible
walks, but also raises the question as to whether the walks remain unique-arc. In addition, the
distinction between visiting repeated nodes and stopping at the same node should be clearly
made even if the walk is no longer simple. Finally, we may consider criteria jointly, for example,
minimization of total travel time subject to total stop time, or minimization of a weighted sum
of total travel time and total stop time.

R E F E R E N C E S

1. A.J. Swersey and W. Bailard, Scheduling school buses, Management Science 30, 844-853, (1984).
2. Y.-L. Chen and Y.-H. Chin, The quickest path problem, Computers ~4 Operations Research 17, 153-161,

(1990).
3. L.D. Bodin, B.L. Golden, A.A. Assad and M.O. Ball, Routing and scheduling of vehicles and crews: The

state of the art, Computers ~ Operations Research 10, 63-211, (1982).
4. N. Deo and C. Pang, Shortest path algorithms: Taxonomy and annotation, Networks 14, 275-323, (1984).
5. B.L. Golden and T.L. Magnanti, Deterministic network optimization: A bibliography, Networks 7", 149-183,

(1977).
6. M. Desrochers and F. Soumis, A generalized permanent labelling algorithm for the shortest path problem

with time windows, INFOR 26 (3), 191-212, (1988).

I464 H.-H. YANG AND Y.-L. CHEN

7. M. Desrochers, J. Desrosiers and M.M. Solomon, A new optimization algorithm for the vehicle routing
problem with time windows, Operations Research 40, 342-354, (1992).

8. Y. Dumas, J. Desrosiers, E. Gelinas and M.M. Solomon, An optimal algorithm for the traveling salesman
problem with time windows, Operations Research 43, 367-371, (1995).

9. N. Kohl and O.B.G. Madsen, An optimization algorithm for the vehicle routing problem with time windows
based on lagrangian relaxation, Operations Research 45, 395-406, (1997).

10. A.K. Ziliaskopoulos and H.S. Mahmassani, A note on least time path computation considering delays and
prohibitions for intersection movements, Transportation Research Part B 30 (5), 359-367, (1996).

11. Y.-L. Chen, and H.-H. Yang, Shortest paths in traffic-light networks, Transportation Research Part B 34,
241-253, (2000).

12. D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing 28, 652-673, (1998).
13. Institute of Transportation, 2001 Highway Capacity Manual in Taiwan, Ministry of Transportation of Com-

munications, Taipei, Taiwan, ROC, (2001).
14. Department of Transportation, 2003 Tra.~c Flow Data, Taipei City Government, Taipei, Taiwan, ROC,

(2003).
15. F. Dion, H. Rakha and Y.-S. Kang, Comparison of delay estimates at under-saturated and over-saturated

pre-timed signalized intersections, Transportation Research Part B 38 (2), 99-122, (2004).
16. F.B Zhan and C.E. Noon, Shortest path algorithms: An evaluation using real road networks, Transportation

Science 32 (1), 65-73, (1998).
17. L. Fu and L.R. Rilett, Expected shortest paths in dynamic and stochastic traffic networks, Transportation

Research Part B 32 (7), 499-516, (1998).
18. J.Y. Yen, Finding the k shortest loopless paths in a network, Management Science 17, 712-716, (1971).
19. N. Katoh, T. Ibaraki and H. Mine, An efficient algorithm for k shortest simple paths, Networks 12, 411-427,

(1982).
20. S. Dreyfus, An appraisal of some shortest path algorithms, Operations Research 17, 395-412, (1969).
21. B.L. Fox, Data structures and computer science techniques in operations research, Operations Research 26,

686-717, (1978).
22. E. Dijkstra, A note on two problems in connection with graphs, Numeriche Mathematics 1, 269-271, (1959).
23. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms,

Journal of ACM 34, 596-615, (1987).

